Copied to
clipboard

G = C524C8order 200 = 23·52

3rd semidirect product of C52 and C8 acting via C8/C2=C4

metabelian, supersoluble, monomial, A-group

Aliases: C524C8, C10.3F5, C51(C5⋊C8), (C5×C10).3C4, C2.(C5⋊F5), C526C4.3C2, SmallGroup(200,20)

Series: Derived Chief Lower central Upper central

C1C52 — C524C8
C1C5C52C5×C10C526C4 — C524C8
C52 — C524C8
C1C2

Generators and relations for C524C8
 G = < a,b,c | a5=b5=c8=1, ab=ba, cac-1=a3, cbc-1=b3 >

25C4
25C8
5Dic5
5Dic5
5Dic5
5Dic5
5Dic5
5Dic5
5C5⋊C8
5C5⋊C8
5C5⋊C8
5C5⋊C8
5C5⋊C8
5C5⋊C8

Character table of C524C8

 class 124A4B5A5B5C5D5E5F8A8B8C8D10A10B10C10D10E10F
 size 11252544444425252525444444
ρ111111111111111111111    trivial
ρ21111111111-1-1-1-1111111    linear of order 2
ρ311-1-1111111i-ii-i111111    linear of order 4
ρ411-1-1111111-ii-ii111111    linear of order 4
ρ51-1-ii111111ζ87ζ85ζ83ζ8-1-1-1-1-1-1    linear of order 8
ρ61-1-ii111111ζ83ζ8ζ87ζ85-1-1-1-1-1-1    linear of order 8
ρ71-1i-i111111ζ85ζ87ζ8ζ83-1-1-1-1-1-1    linear of order 8
ρ81-1i-i111111ζ8ζ83ζ85ζ87-1-1-1-1-1-1    linear of order 8
ρ94400-1-1-14-1-100004-1-1-1-1-1    orthogonal lifted from F5
ρ104400-14-1-1-1-10000-1-1-1-14-1    orthogonal lifted from F5
ρ114400-1-1-1-1-140000-1-14-1-1-1    orthogonal lifted from F5
ρ124400-1-1-1-14-10000-14-1-1-1-1    orthogonal lifted from F5
ρ134400-1-14-1-1-10000-1-1-1-1-14    orthogonal lifted from F5
ρ1444004-1-1-1-1-10000-1-1-14-1-1    orthogonal lifted from F5
ρ154-400-1-1-14-1-10000-411111    symplectic lifted from C5⋊C8, Schur index 2
ρ164-400-14-1-1-1-100001111-41    symplectic lifted from C5⋊C8, Schur index 2
ρ174-400-1-14-1-1-1000011111-4    symplectic lifted from C5⋊C8, Schur index 2
ρ184-4004-1-1-1-1-10000111-411    symplectic lifted from C5⋊C8, Schur index 2
ρ194-400-1-1-1-14-100001-41111    symplectic lifted from C5⋊C8, Schur index 2
ρ204-400-1-1-1-1-14000011-4111    symplectic lifted from C5⋊C8, Schur index 2

Smallest permutation representation of C524C8
Regular action on 200 points
Generators in S200
(1 65 9 189 136)(2 190 66 129 10)(3 130 191 11 67)(4 12 131 68 192)(5 69 13 185 132)(6 186 70 133 14)(7 134 187 15 71)(8 16 135 72 188)(17 56 157 137 169)(18 138 49 170 158)(19 171 139 159 50)(20 160 172 51 140)(21 52 153 141 173)(22 142 53 174 154)(23 175 143 155 54)(24 156 176 55 144)(25 197 86 125 168)(26 126 198 161 87)(27 162 127 88 199)(28 81 163 200 128)(29 193 82 121 164)(30 122 194 165 83)(31 166 123 84 195)(32 85 167 196 124)(33 118 92 149 105)(34 150 119 106 93)(35 107 151 94 120)(36 95 108 113 152)(37 114 96 145 109)(38 146 115 110 89)(39 111 147 90 116)(40 91 112 117 148)(41 73 184 102 61)(42 103 74 62 177)(43 63 104 178 75)(44 179 64 76 97)(45 77 180 98 57)(46 99 78 58 181)(47 59 100 182 79)(48 183 60 80 101)
(1 23 168 89 104)(2 90 24 97 161)(3 98 91 162 17)(4 163 99 18 92)(5 19 164 93 100)(6 94 20 101 165)(7 102 95 166 21)(8 167 103 22 96)(9 143 197 146 75)(10 147 144 76 198)(11 77 148 199 137)(12 200 78 138 149)(13 139 193 150 79)(14 151 140 80 194)(15 73 152 195 141)(16 196 74 142 145)(25 38 178 65 175)(26 66 39 176 179)(27 169 67 180 40)(28 181 170 33 68)(29 34 182 69 171)(30 70 35 172 183)(31 173 71 184 36)(32 177 174 37 72)(41 113 84 153 187)(42 154 114 188 85)(43 189 155 86 115)(44 87 190 116 156)(45 117 88 157 191)(46 158 118 192 81)(47 185 159 82 119)(48 83 186 120 160)(49 105 131 128 58)(50 121 106 59 132)(51 60 122 133 107)(52 134 61 108 123)(53 109 135 124 62)(54 125 110 63 136)(55 64 126 129 111)(56 130 57 112 127)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200)

G:=sub<Sym(200)| (1,65,9,189,136)(2,190,66,129,10)(3,130,191,11,67)(4,12,131,68,192)(5,69,13,185,132)(6,186,70,133,14)(7,134,187,15,71)(8,16,135,72,188)(17,56,157,137,169)(18,138,49,170,158)(19,171,139,159,50)(20,160,172,51,140)(21,52,153,141,173)(22,142,53,174,154)(23,175,143,155,54)(24,156,176,55,144)(25,197,86,125,168)(26,126,198,161,87)(27,162,127,88,199)(28,81,163,200,128)(29,193,82,121,164)(30,122,194,165,83)(31,166,123,84,195)(32,85,167,196,124)(33,118,92,149,105)(34,150,119,106,93)(35,107,151,94,120)(36,95,108,113,152)(37,114,96,145,109)(38,146,115,110,89)(39,111,147,90,116)(40,91,112,117,148)(41,73,184,102,61)(42,103,74,62,177)(43,63,104,178,75)(44,179,64,76,97)(45,77,180,98,57)(46,99,78,58,181)(47,59,100,182,79)(48,183,60,80,101), (1,23,168,89,104)(2,90,24,97,161)(3,98,91,162,17)(4,163,99,18,92)(5,19,164,93,100)(6,94,20,101,165)(7,102,95,166,21)(8,167,103,22,96)(9,143,197,146,75)(10,147,144,76,198)(11,77,148,199,137)(12,200,78,138,149)(13,139,193,150,79)(14,151,140,80,194)(15,73,152,195,141)(16,196,74,142,145)(25,38,178,65,175)(26,66,39,176,179)(27,169,67,180,40)(28,181,170,33,68)(29,34,182,69,171)(30,70,35,172,183)(31,173,71,184,36)(32,177,174,37,72)(41,113,84,153,187)(42,154,114,188,85)(43,189,155,86,115)(44,87,190,116,156)(45,117,88,157,191)(46,158,118,192,81)(47,185,159,82,119)(48,83,186,120,160)(49,105,131,128,58)(50,121,106,59,132)(51,60,122,133,107)(52,134,61,108,123)(53,109,135,124,62)(54,125,110,63,136)(55,64,126,129,111)(56,130,57,112,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)>;

G:=Group( (1,65,9,189,136)(2,190,66,129,10)(3,130,191,11,67)(4,12,131,68,192)(5,69,13,185,132)(6,186,70,133,14)(7,134,187,15,71)(8,16,135,72,188)(17,56,157,137,169)(18,138,49,170,158)(19,171,139,159,50)(20,160,172,51,140)(21,52,153,141,173)(22,142,53,174,154)(23,175,143,155,54)(24,156,176,55,144)(25,197,86,125,168)(26,126,198,161,87)(27,162,127,88,199)(28,81,163,200,128)(29,193,82,121,164)(30,122,194,165,83)(31,166,123,84,195)(32,85,167,196,124)(33,118,92,149,105)(34,150,119,106,93)(35,107,151,94,120)(36,95,108,113,152)(37,114,96,145,109)(38,146,115,110,89)(39,111,147,90,116)(40,91,112,117,148)(41,73,184,102,61)(42,103,74,62,177)(43,63,104,178,75)(44,179,64,76,97)(45,77,180,98,57)(46,99,78,58,181)(47,59,100,182,79)(48,183,60,80,101), (1,23,168,89,104)(2,90,24,97,161)(3,98,91,162,17)(4,163,99,18,92)(5,19,164,93,100)(6,94,20,101,165)(7,102,95,166,21)(8,167,103,22,96)(9,143,197,146,75)(10,147,144,76,198)(11,77,148,199,137)(12,200,78,138,149)(13,139,193,150,79)(14,151,140,80,194)(15,73,152,195,141)(16,196,74,142,145)(25,38,178,65,175)(26,66,39,176,179)(27,169,67,180,40)(28,181,170,33,68)(29,34,182,69,171)(30,70,35,172,183)(31,173,71,184,36)(32,177,174,37,72)(41,113,84,153,187)(42,154,114,188,85)(43,189,155,86,115)(44,87,190,116,156)(45,117,88,157,191)(46,158,118,192,81)(47,185,159,82,119)(48,83,186,120,160)(49,105,131,128,58)(50,121,106,59,132)(51,60,122,133,107)(52,134,61,108,123)(53,109,135,124,62)(54,125,110,63,136)(55,64,126,129,111)(56,130,57,112,127), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200) );

G=PermutationGroup([[(1,65,9,189,136),(2,190,66,129,10),(3,130,191,11,67),(4,12,131,68,192),(5,69,13,185,132),(6,186,70,133,14),(7,134,187,15,71),(8,16,135,72,188),(17,56,157,137,169),(18,138,49,170,158),(19,171,139,159,50),(20,160,172,51,140),(21,52,153,141,173),(22,142,53,174,154),(23,175,143,155,54),(24,156,176,55,144),(25,197,86,125,168),(26,126,198,161,87),(27,162,127,88,199),(28,81,163,200,128),(29,193,82,121,164),(30,122,194,165,83),(31,166,123,84,195),(32,85,167,196,124),(33,118,92,149,105),(34,150,119,106,93),(35,107,151,94,120),(36,95,108,113,152),(37,114,96,145,109),(38,146,115,110,89),(39,111,147,90,116),(40,91,112,117,148),(41,73,184,102,61),(42,103,74,62,177),(43,63,104,178,75),(44,179,64,76,97),(45,77,180,98,57),(46,99,78,58,181),(47,59,100,182,79),(48,183,60,80,101)], [(1,23,168,89,104),(2,90,24,97,161),(3,98,91,162,17),(4,163,99,18,92),(5,19,164,93,100),(6,94,20,101,165),(7,102,95,166,21),(8,167,103,22,96),(9,143,197,146,75),(10,147,144,76,198),(11,77,148,199,137),(12,200,78,138,149),(13,139,193,150,79),(14,151,140,80,194),(15,73,152,195,141),(16,196,74,142,145),(25,38,178,65,175),(26,66,39,176,179),(27,169,67,180,40),(28,181,170,33,68),(29,34,182,69,171),(30,70,35,172,183),(31,173,71,184,36),(32,177,174,37,72),(41,113,84,153,187),(42,154,114,188,85),(43,189,155,86,115),(44,87,190,116,156),(45,117,88,157,191),(46,158,118,192,81),(47,185,159,82,119),(48,83,186,120,160),(49,105,131,128,58),(50,121,106,59,132),(51,60,122,133,107),(52,134,61,108,123),(53,109,135,124,62),(54,125,110,63,136),(55,64,126,129,111),(56,130,57,112,127)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200)]])

C524C8 is a maximal subgroup of   C52⋊C16  D10.2F5  C524M4(2)  C20.F5  C527M4(2)  C5213M4(2)
C524C8 is a maximal quotient of   C524C16

Matrix representation of C524C8 in GL8(𝔽41)

040100000
040010000
040000000
140000000
00001000
00000100
00000010
00000001
,
401000000
400100000
400010000
400000000
00000100
00000010
00000001
000040404040
,
6152340000
8827400000
3314110000
71635260000
000023222722
000050191
000019105
00004044018

G:=sub<GL(8,GF(41))| [0,0,0,1,0,0,0,0,40,40,40,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[40,40,40,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,40,0,0,0,0,0,1,0,40,0,0,0,0,0,0,1,40],[6,8,33,7,0,0,0,0,15,8,14,16,0,0,0,0,2,27,1,35,0,0,0,0,34,40,1,26,0,0,0,0,0,0,0,0,23,5,19,40,0,0,0,0,22,0,1,4,0,0,0,0,27,19,0,40,0,0,0,0,22,1,5,18] >;

C524C8 in GAP, Magma, Sage, TeX

C_5^2\rtimes_4C_8
% in TeX

G:=Group("C5^2:4C8");
// GroupNames label

G:=SmallGroup(200,20);
// by ID

G=gap.SmallGroup(200,20);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-5,10,26,323,328,2004,2009]);
// Polycyclic

G:=Group<a,b,c|a^5=b^5=c^8=1,a*b=b*a,c*a*c^-1=a^3,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C524C8 in TeX
Character table of C524C8 in TeX

׿
×
𝔽